New cache architecture on Intel I9 and Skylake server: An initial assessment


Intel has introduced the new I9 CPU which is seen as HEDT (High-End-DeskTop) product. The micro architecture is in many respects shared with the new Skylake server micro architecture.I f history is a guide technology introduced in this segment slowly trickles down to more budget friend desktops. From a Micro architecture point of view it seems that several things about these CPU’s will force changes on micro architectural attacks – especially in the memory subsystem. In this blog post I’ll do a short overview on some of relevant changes and the effects they’ll may have on micro architecture attacks. Since I don’t own or have access to an actual I9 processor or Skylake server processor this blog post is just conjecture.


Resume of the “old” cache hierachy

The major changes over earlier process from a micro architecture point of view is that the cache system has received a significant overhaul. Current Intel CPUs have a 3 level cache hierarchy – two very small L1 caches, one for data, one for instructions. The second level cache (L2 or Mid Latency Cache) is somewhat larger. L1 data, L1 code and L2  part of each core and private to the core. Finally, Intel CPU’s had a huge 3rd level cache (usually called L3 or  largest latency cache) shared between all cores. The 3rd level cache is subdivided into slices that are logically connected to a core. To effectively share this cache, Intel connected them on a ring bus called the Quick Path Interconnect. Further the 3rd level cache was an inclusive cache, which means that anything that is anything cached in L1 or L2 must also be cached in L3.



Some of the important changes that has been announced in the Intel Software Optimization Manuals [1]  are:

–    A focus on a high number of cores in the CPU (up to 18 in the HEDT models)

–    A reduced over all cache size per core (compared to similar older models)

–    A very significant increase in the size of the L2 (factor of 4)

–    Doubled the bandwidth of L2, while only slightly increasing the latency

–    Slightly more than offset by a reduction of the shared L3.

–    Reorganized  L3 cache to be a non-inclusive cache

–    Replaces the QPI with a mesh-style bus.

Why does these changes make sense?

Increasing the size of L2 on the cost of L3 makes sense as the L2 is much faster than L3 for applications – one can only assume that making the L3 helps reduce die size and cost. Also the increase in size of the L2 caches reduces the marginal utility of the L3. Finally  as the probability of cache set contention rises with the number of cores, it becomes advantageous to make a larger part of the total cache private. Cache contention in L3 is a problem Intel has battled before. With Haswell they introduced Cache Allocation Technology (CAT) to allow software to control cache usage of the L3 to deal with contention.

The number of cores is probably also the reason why Intel dropped the QPI ring buffer design. There is a penalty for having memory served from another core’s slices. On a ring bus this penalty is proportional to how far the cores are a part on the ring. With more cores, this penalty increases. Moving to a more flexible system seems sensible from this vantage point.

Having an inclusive L3 makes cache coherency easier and faster to manage. However, an inclusive cache comes with a cost as the same data are loaded in multiple caches. The relative loss of total cache storage space is exactly the ratio of the (L2 +L1) to L3 sizes. Previous this ratio has been around 1:10 (depending on actual CPU), but multiplying the L2 size by 4 and making the L3 a tiny bit smaller the ratio is now about 1:1.5. Thus the making the L3 cache non-inclusive is very essential to performance. At this point it’s important to notice that Intel uses the wording “non-inclusive”. This term is not well defined. The opposite of inclusive is exclusive meaning the content of L3 cannot be loaded in L1 and L2. I think Intel would have used the defined term exclusive if the cache really where exclusive. Thus,   it is probably fair to assume that non-inclusive means that data may or may not be cached in L1, L2 and L3 at the same time, but exactly how this is governed is important. Unfortunately there is no information available on this.

It’s worth noting that many of these changes has been tested and developed by Intel for the Knights landing micro architecture. Knights landing is a high throughput micro architecture, sold in relative small amounts. Thus it’s likely that many features developed for this CPU will end up being trickled down.  It’ll be interesting to see if Intel plans to trickle it down into laptop/small desktops or use different cache designs for different classes of CPUs.



Cache side channel attacks

This new cache layout is likely to have profound effect on cache side channel attacks. I think Flush+Reload will work even without the non-inclusive cache. The flush primitive is based on the CLFlush instruction which is part of the instruction set architecture (ISA). Intel has been very reluctant in the past to change the ISA and therefore my estimate is that flushing will work as always. I think the reload primitive will remain active – I find it likely that an uncached load will also load stuff into the shared L3. Also it’s likely that the QPI replacement bus can be used to fetch data from private L2 caches similar to AMD’s cross CPU transmission. This will give Flush+reload a nice flush+transfer flavor, but it’ll still work. For more on Invalidate (Flush)+Transfer see [2]. Since the L3 cache must be filled in someway we can fairly certain that at least one of these things are true, if not both. The latter being my guess.

The big change are likely to be related to evict and prime primitives. Assuming that cache contention between cores was a major reason for redesigning the cache, it’s unlikely that one can can load stuff into another core’s private hierarchy. Thus, the prime and evict primitives for  cross core attacks.  However,both are likely to work decently within a core (Hyper threading or scheduling on same core).

While the ISA behavior of CLFLush is almost certain to remain unchanged, the micro architecture below it will see significant changes. With QPI gone using the flush+flush attack by Gruss et al. [3] to find out how many hubs on the ring bus away you are from a particular slice almost certainly won’t work. This does not mean that you won’t find a side channel here in CLFlush, buses are typically bandwidth limited thus being an obvious source of congestion – without an inclusive L3 the bus bandwidth might even be easier to consume. Also the Flush+Flush attack as a Flush+reload replacement, is likely to produce a different timing behavior in the new micro architecture. My guess upfront is that a timing difference and thus a side channel remains.

Also affected by the non-inclusiveness of the L3 is row buffer side channel attacks such as those presented by Pessl. et al.[4]  Without an effective eviction cross core attacks may be severely stifled. The ability to reverse engineer the DRAM complex mapping function is likely to remain unchanged as it hinges not on eviction, but the CLFlush instruction’s ISA behavior.

With the CLFlush instruction and evict likely still working on local cores, row hammer will  remain effective. But in some scenarios, indirect effects of  micro architecture changes may break specific attacks such as that of  Sarani Bhattacharya, Debdeep Mukhopadhyay [5]. The reason is that such attacks rely on information leakage in the caches, that becomes more difficult to leverage as described above.



While the changes to the cache makes sense with the significant number of cores in the affected systems, it seems unlikely that the changes will trickle down to notebooks and laptops. With only two cores the existing cache design seems sensible. Thus we are likely to see a two tier cache design moving on.


Having a non-inclusive L3 cache is significantly more secure from a side channel perspective than an inclusive in cross core scenarios. This opens up for defending these attacks, by isolating different security domains on different cores potentially dynamically. While flush+reload is likely to be unaffected, this attack is also the easiest to thwart in real life scenarios as avoiding shared memory cross security domains is an available and effective countermeasure. Lots of new research is required to gauge the security of these micro architecture changes.



[1] Intel. Intel® 64 and IA-32 Architectures Optimization Reference Manual. July 2017.

[2] Irazoqui, Gorka, Thomas Eisenbarth, and Berk Sunar. “Cross processor cache attacks.” Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. ACM, 2016.a

[3] Gruss, Daniel, et al. “Flush+ Flush: a fast and stealthy cache attack.” Detection of Intrusions and Malware, and Vulnerability Assessment. Springer International Publishing, 2016. 279-299.

[4] Pessl, Peter, et al. “DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.” USENIX Security Symposium. 2016.

[5] Sarani Bhattacharya, Debdeep Mukhopadhyay: “Curious case of Rowhammer: Flipping Secret Exponent Bits using Timing Analysis”.

1 thought on “New cache architecture on Intel I9 and Skylake server: An initial assessment”

Comments are closed.